Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomimetics (Basel) ; 9(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38392145

RESUMO

This paper presents advances in designs of resurfacing arthroplasty endoprostheses that occurred through their historical generations. The critical characteristics of contemporary generation hip resurfacing arthroplasty endoprostheses are given and the failures resulting from the specific generation cemented and short stem fixation of the femoral component are reviewed. On the background of these failures, the critical need arises for an alternative approach to the fixation of components of resurfacing arthroplasty leading towards the first generation of biomimetic fixation for resurfacing arthroplasty endoprostheses. The state of the art of the completed bioengineering research on the first biomimetic fixation for resurfacing arthroplasty endoprostheses is presented. This new design type of completely cementless and stemless resurfacing arthroplasty endoprostheses of the hip joint (and other joints), where endoprosthesis components are embedded in the surrounding bone via the prototype biomimetic multi-spiked connecting scaffold (MSC-Scaffold), initiates the first at all generations of biomimetic endoprostheses of diarthrodial joints.

2.
J Clin Med ; 10(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34208953

RESUMO

The multi-spiked connecting scaffold (MSC-Scaffold) prototype is the essential innovation in the fixation of components of resurfacing total hip arthroplasty (THRA) endoprostheses in the subchondral trabecular bone. We conducted the computed micro-tomography (micro-CT) assessment of the subchondral trabecular bone microarchitecture before and after the MSC-Scaffold embedding in femoral heads removed during long-stem endoprosthesis total hip arthroplasty (THA) of different bone densities from 4 patients with hip osteoarthritis (OA). The embedding of the MSC-Scaffold in subchondral trabecular bone causes the change in its relative area (BA/TA, bone area/total area ratio) ranged from 18.2% to 24.7% (translating to the calculated density ρB relative change 11.1-14.4%, and the compressive strength S relative change 75.3-122.7%) regardless of its initial density (before the MSC-Scaffold embedding). The densification of the trabecular microarchitecture of subchondral trabecular bone due to the MSC-Scaffold initial embedding gradually decreases with the increasing distance from the apexes of the MSC-Scaffold's spikes while the spatial extent of this subchondral trabecular bone densification ranged from 1.5 to 2.5 mm (which is about half the height of the MSC-Scaffold's spikes). It may be suggested, despite the limited number of examined femoral heads, that: (1) the magnitude of the effect of the MSC-Scaffold embedding on subchondral trabecular bone densification may be a factor contributing to the maintenance of the MSC-Scaffold also for decreased initial bone density values, (2) the deeper this effect of the subchondral trabecular bone densification, the better strength of subchondral trabecular bone, and as consequence, the better post-operative embedding of the MSC-Scaffold in the bone should be expected.

3.
Materials (Basel) ; 14(6)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809176

RESUMO

Our team has been working for some time on designing a new kind of biomimetic fixation of resurfacing endoprostheses, in which the innovative multi-spiked connecting scaffold (MSC-Scaffold) that mimics the natural interface between articular cartilage and periarticular trabecular bone in human joints is the crucial element. This work aimed to develop a numerical model enabling the design of the considered joint replacement implant that would reflect the mechanics of interacting biomaterials. Thus, quantitative micro-CT analysis of density distribution in bone material during the embedding of MSC-Scaffold in periarticular bone was applied. The performed numerical studies and corresponding mechanical tests revealed, under the embedded MSC-Scaffold, the bone material densification affecting its mechanical properties. On the basis of these findings, the built numerical model was modified by applying a simulated insert of densified bone material. This modification led to a strong correlation between the re-simulation and experimental results (FVU = 0.02). The biomimetism of the MSC-Scaffold prototype that provided physiological load transfer from implant to bone was confirmed based on the Huber-von Mises-Hencky (HMH) stress maps obtained with the validated finite element (FE) model of the problem. The micro-CT bone density assessment performed during the embedding of the MSC-Scaffold prototype in periarticular bone provides insight into the mechanical behaviour of the investigated implant-bone system and validates the numerical model that can be used for the design of material and geometric features of a new kind of resurfacing endoprostheses fixation.

4.
Materials (Basel) ; 12(23)2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31810185

RESUMO

The multi-spiked connecting scaffold (MSC-Scaffold) prototype with spikes mimicking the interdigitations of articular subchondral bone is an essential innovation in surgically initiated fixation of resurfacing arthroplasty (RA) endoprosthesis components. This paper aimed to present a determination of the suitable range of conditions for the calcium phosphate (CaP) potentiostatic electrochemical deposition (ECDV=const) on the MSC-Scaffold prototype spikes to achieve a biomineral coating with a native Ca/P ratio. The CaP ECDV=const process on the MSC-Scaffold Ti4Al6V pre-prototypes was investigated for potential VECDfrom -9 to -3 V, and followed by 48 h immersion in a simulated body fluid. An acid-alkaline pretreatment (AAT) was applied for a portion of the pre-prototypes. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD) studies of deposited coatings together with coatings weight measurements were performed. Themost suitable VECD range, from -5.25 to -4.75 V, was determined as the native biomineral Ca/P ratio of coatings was achieved. AAT increases the weight of deposited coatings (44% for VECD = -5.25 V, 9% for VECD = -5.00 V and 15% for VECD = -4.75 V) and the coverage degree of the lateral spike surfaces (40% for VECD = -5.25 V, 14% for VECD = -5.00 V and 100% for VECD = -4.75 V). XRD confirmed that the multiphasic CaP coating containing crystalline octacalcium phosphate is produced on the lateral surface of the spikes of the MSC-Scaffold. ECDV=const preceded by AAT prevents micro-cracks on the bone-contacting surfaces of the MSC-Scaffold prototype, increases its spikes' lateral surface coverage, and results in the best modification effect at VECD = -5.00 V. To conclude, the biomimetic MSC-Scaffold prototype with desired biomineral coating of native Ca/P ratio was obtained for cementless RA endoprostheses.

5.
Biomed Res Int ; 2019: 6952649, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31355275

RESUMO

Resurfacing hip and knee endoprostheses are generally embedded in shallow, prepared areas in the bone and secured with cement. Massive cement penetration into periarticular bone, although it provides sufficient primary fixation, leads to the progressive weakening of peri-implant bone and results in failures. The aim of this paper was to investigate in an animal model the first biomimetic fixation of components of resurfacing arthroplasty endoprostheses by means of the innovative multispiked connecting scaffold (MSC-Scaffold). The partial resurfacing knee arthroplasty (RKA) endoprosthesis working prototype with the MSC-Scaffold was designed for biomimetic fixation investigations using reverse engineering methods and manufactured by selective laser melting. After Ca-P surface modification of bone contacting surfaces of the MSC-Scaffold, the working prototypes were implanted in 10 swines. Radiological, histopathological, and micro-CT examinations were performed on retrieved bone-implant specimens. Clinical examination confirmed very good stability (4 in 5-point Likert scale) of the operated knee joints. Radiological examinations showed good implant fixation (radiolucency less than 2 mm) without any signs of migration. Spaces between the MSC-Scaffold spikes were penetrated by bone tissue. The histological sections showed newly formed trabecular bone tissue between the spikes, and the trabeculae of periscaffold bone were seen in contact with the spikes. The micro-CT results showed the highest percentage of bone tissue ingrowths into the MSC-Scaffold at a distance of 2.5÷3.0 mm from the spikes bases. The first biomimetic fixation for resurfacing arthroplasty was successfully verified in 10 swines investigations using RKA endoprosthesis working prototypes. The performed research shows that the MSC-Scaffold allows for cementless and biomimetic fixation of resurfacing endoprosthesis components in periarticular cancellous bone.


Assuntos
Artroplastia do Joelho , Materiais Biomiméticos , Fixadores Internos , Articulação do Joelho , Desenho de Prótese , Animais , Humanos , Articulação do Joelho/metabolismo , Articulação do Joelho/patologia , Articulação do Joelho/cirurgia , Suínos
6.
Comput Methods Biomech Biomed Engin ; 21(9): 541-547, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30396280

RESUMO

The multispiked connecting scaffold (MSC-scaffold) prototype is an essential innovation in the fixation of components of resurfacing arthroplasty (RA) endoprostheses, providing their entirely non-cemented and bone-tissue-preserving fixation in peri-articular bone. An FE study is proposed to evaluate the influence of geometrical features of the MSC-scaffold on the transfer of mechanical load in peri-implant bone. For this study, an FE model of Ti-Alloy MSC-scaffold prototype embedded in a bilinear elastic, transversely isotropic bone material was built. For the compressive load on the MSC-scaffold, maps of Huber-Mises-Hencky (HMH) stress in peri-implant bone were determined. The influence of the distance between the bases of neighbouring spikes, the apex angle of spikes, and the height of the spherical cup of spikes of the MSC-scaffold were analysed. It was found that the changes in the distance between the bases of neighbouring spikes from 0.2 to 0.5 mm cause the HMH stress to increase in bone material by 32%. The changes of the apex angle of spikes from 2° to 4° decrease the HMH stress in bone material by 39%. The changes of height of the spherical cup of spikes from 0 to 0.12 mm increase the HMH stress in bone material by 24%. In conclusion, the spikes' apex angle and the distance between the bases of spikes of the MSC-scaffold are the key geometrical features determining the appropriate MSC-scaffold prototype design. The built FE model was found to be useful in bioengineering design of the novel fixation system for RA endoprostheses by means of the MSC-scaffold.


Assuntos
Osso e Ossos/fisiologia , Análise Numérica Assistida por Computador , Próteses e Implantes , Estresse Mecânico , Alicerces Teciduais/química , Ligas , Materiais Biomiméticos/química , Osso e Ossos/efeitos dos fármacos , Simulação por Computador , Análise de Elementos Finitos , Humanos , Titânio/farmacologia
7.
Appl Bionics Biomech ; 2017: 5638680, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28785159

RESUMO

The multispiked connecting scaffold (MSC-Scaffold) prototype, inspired by the biological system of anchorage of the articular cartilage in the periarticular trabecular bone by means of subchondral bone interdigitations, is the essential innovation in fixation of the bone in resurfacing arthroplasty (RA) endoprostheses. The biomimetic MSC-Scaffold, due to its complex geometric structure, can be manufactured only using additive technology, for example, selective laser melting (SLM). The major purpose of this work is determination of constructional possibilities for the structural-geometric functionalization of SLM-manufactured MSC-Scaffold prototype, compensating the reduced ability-due to the SLM technological limitations-to accommodate the ingrowing bone filling the interspike space of the prototype, which is important for the prototype bioengineering design. Confocal microscopy scanning of components of the SLM-manufactured prototype of total hip resurfacing arthroplasty (THRA) endoprosthesis with the MSC-Scaffold was performed. It was followed by the geometric measurements of a variety of specimens designed as the fragments of the MSC-Scaffold of both THRA endoprosthesis components. The reduced ability to accommodate the ingrowing bone tissue in the SLM-manufactured prototypes versus that in the corresponding CAD models has been quantitatively determined. Obtained results enabled to establish a way of compensatory structural-geometric functionalization, allowing the MSC-Scaffold adequate redesigning and manufacturing in additive SLM technology.

8.
Materials (Basel) ; 9(7)2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28773652

RESUMO

We present here-designed, manufactured, and tested by our research team-the Ti-alloy prototype of the multispiked connecting scaffold (MSC-Scaffold) interfacing the components of resurfacing arthroplasty (RA) endoprostheses with bone. The spikes of the MSC-Scaffold prototype mimic the interdigitations of the articular subchondral bone, which is the natural biostructure interfacing the articular cartilage with the periarticular trabecular bone. To enhance the osteoinduction/osteointegration potential of the MSC-Scaffold, the attempts to modify its bone contacting surfaces by the process of electrochemical cathodic deposition of Ca-P was performed with further immersion of the MSC-Scaffold prototypes in SBF in order to transform the amorphous calcium-phosphate coating in hydroxyapatite-like (HA-like) coating. The pilot experimental study of biointegration of unmodified and Ca-P surface-modified MSC-Scaffold prototypes was conducted in an animal model (swine) and in osteoblast cell culture. On the basis of a microscope-histological method the biointegration was proven by the presence of trabeculae in the interspike spaces of the MSC-Scaffold prototype on longitudinal and cross-sections of bone-implant specimens. The percentage of trabeculae in the area between the spikes of specimen containing Ca-P surface modified scaffold prototype observed in microCT reconstructions of the explanted joints was visibly higher than in the case of unmodified MSC-Scaffold prototypes. Significantly higher Alkaline Phosphatase (ALP) activity and the cellular proliferation in the case of Ca-P-modified MSC-Scaffold pre-prototypes, in comparison with unmodified pre-prototypes, was found in osteoblast cell cultures. The obtained results of experimental implantation in an animal model and osteoblast cell culture evaluations of Ca-P surface-modified and non-modified biomimetic MSC-Scaffold prototypes for biomimetic entirely-cementless RA endoprostheses indicate the enhancement of the osteoinduction/osteointegration potential by the Ca-P surface modification of the Ti-alloy MSC-Scaffold prototype. Planned further research on the prototype of this biomimetic MSC-Scaffold for a new generation of RA endoprostheses is also given.

9.
Biomed Res Int ; 2015: 815648, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26357659

RESUMO

The aim of the study was to determine the content of particular elements Ca, Mg, P, Na, K, Zn, Cu, Fe, Mo, Cr, Ni, Ba, Sr, and Pb in the proximal femur bone tissue (cancellous and cortical bone) of 96 patients undergoing total hip replacement for osteoarthritis using ICP-AES and FAAS analytical techniques. The interdependencies among these elements and their correlations depended on factors including age, gender, place of residence, tobacco consumption, alcohol consumption, exposure to environmental pollution, physical activity, and type of degenerative change which were examined by statistical and chemometric methods. The factors that exerted the greatest influence on the elements in the femoral head and neck were tobacco smoking (higher Cr and Ni content in smokers), alcohol consumption (higher concentrations of Ni, Cu in people who consume alcohol), and gender (higher Cu, Zn, and Ni concentrations in men). The factors influencing Pb accumulation in bone tissue were tobacco, alcohol, gender, and age. In primary and secondary osteoarthritis of the hip, the content and interactions of elements are different (mainly those of Fe and Pb). There were no significant differences in the concentrations of elements in the femoral head and neck that could be attributed to residence or physical activity.


Assuntos
Cabeça do Fêmur/metabolismo , Articulação do Quadril/metabolismo , Metais/análise , Osteoartrite/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Artroplastia de Quadril/métodos , Feminino , Colo do Fêmur/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade
10.
Biomed Res Int ; 2013: 689089, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23984397

RESUMO

We present the new fixation method for RHA (resurfacing hip arthroplasty) endoprostheses by means of the biomimetic multispiked connecting scaffold (MSC-Scaffold). Such connecting scaffold can generate new type of RHA endoprostheses, that is stemless and fixed entirely without cement. The preprototypes of this MSC-Scaffold were manufactured with modern additive laser additive technology (SLM). The pilot surgical implantations in animal model (two laboratory swine) of MSC-Scaffold preprototypes have showed after two months neither implant loosening, migration, and nor other early complications. From the results of performed histopathological evaluation of the periscaffold spikes bone tissue and 10-day culture of human osteoblasts (NHOst) we can conclude that (1) the scaffolding effect was obtained and (2) to improve the osseointegration of the scaffold spikes, their material surface should be physicochemically modified (e.g., with hydroxyapatite). Some histopathological findings in the periscaffold domain near the MSC-Scaffold spikes bases (fibrous connective tissue and metallic particles near the MSC-Scaffold spikes bases edges) prompt considering the necessity to optimize the design of the MSC-Scaffold in the regions of its interspike space near the spikes bases edges, to provide more room for new bone formation in this region and for indispensable post-processing (glass pearl blasting) after the SLM manufacturing.


Assuntos
Materiais Biomiméticos/farmacologia , Cimentos Ósseos/farmacologia , Prótese de Quadril , Osteoblastos/citologia , Desenho de Prótese , Implantação de Prótese , Alicerces Teciduais/química , Laranja de Acridina/metabolismo , Animais , Artroplastia de Quadril , Células Cultivadas , Desenho Assistido por Computador , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/efeitos dos fármacos , Cabeça do Fêmur/cirurgia , Quadril/diagnóstico por imagem , Quadril/patologia , Quadril/cirurgia , Humanos , Implantes Experimentais , Microscopia de Fluorescência , Modelos Animais , Radiografia
11.
Acta Bioeng Biomech ; 11(2): 65-70, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19839559

RESUMO

The resurfacing arthroplasty (RA) has become at present the most developed minimally invasive kind of all total arthroplasties, which is a result of the progress in biomaterials engineering, biomechanical design and surgical fixation methods achieved over the past decade. Despite the raising popularity of RA, which undergoes at present its renaissance, it still causes several clinical complications. In this paper, we present the most important result our research project (4T07C05629), finished in February 2008, which is the prototype of original minimally invasive endoprosthesis for total hip resurfacing arthroplasty (THRA). We propose the essential innovation in fixation technique of the RA endoprosthesis components in trabecular bone by means of the multi-spiked connecting scaffold, offering the possibility of totally cementless fixation and the physiological blood supply in trabecular bone of femoral head, which is not possible in contemporary used cemented RA endoprostheses. Moreover, the femoral component is designed to preserve the femoral neck and head blood vessels. The prototype of the new kind of hip resurfacing endoprosthesis was CAD-designed in the frames of the Rogala's international patent general assumptions [1]-[3], optimized on the basis of the preliminary biomechanical tests on the pre-prototypes, and manufactured in the Selective Laser Melting (SLM) of both CoCrMo powder and Ti6Al7Nb powder.


Assuntos
Bioengenharia/métodos , Prótese de Quadril , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Desenho de Prótese/métodos , Fenômenos Biomecânicos , Cimentos Ósseos , Fêmur/diagnóstico por imagem , Humanos , Radiografia
12.
Chir Narzadow Ruchu Ortop Pol ; 67(4): 395-403, 2002.
Artigo em Polonês | MEDLINE | ID: mdl-12418404

RESUMO

In modern bone biomechanics the bone tissue is treated as a porous elastically deformed solid filled with a viscous newtonian fluid (two-phase poroelastic model) [41]. Traditional one-phase biomechanical model of bone tissue is still valid and it can be considered as an approximate model in comparison with the more realistic two-phase model of bone tissue. Hierarchical biostructure of the pore space of cortical and trabecular bone is presented, including the compartments of bone pore space after Cowin [12, 13]. Examples of clinical amplications of the poroelastic model of bone tissue such as: osteoporosis, porous coated implants, bone electromagnetostimulation in rehabilitation are indicated.


Assuntos
Materiais Biocompatíveis , Regeneração Óssea , Substitutos Ósseos , Animais , Fenômenos Biomecânicos , Cimentos Ósseos , Consolidação da Fratura , Humanos , Próteses e Implantes
13.
Chir Narzadow Ruchu Ortop Pol ; 67(3): 309-16, 2002.
Artigo em Polonês | MEDLINE | ID: mdl-12238403

RESUMO

The modern biomechanical two-phase poroelastic model of bone tissue is presented. Bone tissue is treated in this model as a porous elastically deformed solid filled with a viscous newtonian fluid. Traditional one-phase biomechanical model of bone tissue, which is characterized by the Young modulus and the Poisson's coefficient, is still valid and it can be treated as an approximate model in comparison with the more realistic two-phase model of bone tissue. The biomechanical function of fluids in bone is considered. Bone biodynamics is presented in form of the scheme which illustrates the mechano-adaptive, the mechano-electric and the electrophysiologic properties of bone tissue. Essentials of the poroelastic model of bone tissue is the mechanical load induced flow of intraosseous fluid and the associated strain generated electric potentials SGPs.


Assuntos
Líquidos Corporais/fisiologia , Osso e Ossos/fisiologia , Modelos Biológicos , Adaptação Fisiológica , Animais , Fenômenos Biomecânicos , Elasticidade , Osteoblastos/fisiologia , Distribuição de Poisson , Reologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...